Swarm Bot Series Part One: Heres What Bees are Teaching Us About the Future of the IoT – IoT For All

Posted: December 10, 2019 at 9:45 pm

In one of the opening scenes of a Black Mirror episode, a tiny bee drone pollinates a daisy, which basks in the bright glow of a sunny day. In a TV series known for its exploration of a dark and dystopian future, the scene is rare. It portrays a tech-enabled future where robotics are used to enhance lives, not harm them.

But later on, that bee is joined by thousands more bees in a coordinated attack on a woman. Its clear that the bees are working together as a single force, using real-time data to achieve a common goal.

This episode stands out among others because it covers a type of technology thats largely unknown and unexplored by most mass media channels. It points to repercussions of a technology that most people have never heard of, but which is set to change everything we know about the Internet of Things: swarm robotics.

Swarm Robotics is an exciting field of practice inspired by the proliferation of the Internet of Things. Until recently, robotics technology had focused on creating advanced robots that worked alone think of automated factory floors and friendly robotic baristas that are beginning to pop up in Silicon Valley cafes and various airports.

But now, thanks to insights drawn from the most unlikely of places, nature, the field of robotics is evolving into something much greater and, as Black Mirror suggests, perhaps more sinister. But before we go too far down that speculative road, it might be a good idea to first get a basic understanding of how swarm robots work, the technology behind them, and what theyre truly capable of right now.

Swarm technology is inspired by swarm intelligence, which draws inspiration from the lives of social insects in nature. One major component is improving communication and response to feedback while working as a team. It involves understanding how constant changes in other robots within the group should affect the groups functionality.

Most of us understand how the IoT is transforming our homes into smart networks that give us all kinds of convenient benefits. But your connected thermostat, your smart fridge, and your Alexa-enabled washing machines all rely on a central authority that guides/manages/instructs/informs them on what to do. The smart window blinds that open each morning and allow you to greet the sun without getting out of bed arent talking to your connected security system to check whether your neighbor happens to be standing near your bedroom window.

Swarm bots are different. They communicate laterally with one another in a constantly changing environment, with no direction from a higher authority to tell them what to do.

Scientists are now beginning to understand how swarm robotics can have pragmatic applications in the Internet of Things and the world stands poised on the brink of another tech revolution.

The time to learn about swarm robotics is now- the evolution of swarm robotics is forever intertwined with the IoT and leaders who want a jump on learning about new directions in tech will want to keep their eyes peeled for new content in this area. Heres where you can learn how it works, its current applications, and what the future looks like in terms of research and development.

Swarm robotics is simply an area of robotics that focuses on coordinating large groups of fairly simple robots using local rules. As stated, swarm-bots are inspired by the lives of social insects such as bees and ants. Among them, the power of the community is leveraged to perform tasks outside the capabilities of the individual.

Image here:maybe a gif ants building a hill or something?

In swarm robotics, the group of robots isnt just any group. It is constituted by mimicking the functional characteristics of insect swarms:

Social insects have a lot to teach us, from the wasps nest-building and the honey bees coordination to the termite mounds construction and trail-following of the ant. For a long time, we thought that these were mysteries we would never understand.

However, in recent times, research has demonstrated that we can mimic these complex systems without the sophisticated knowledge initially thought of as necessary. In a social insect colony, individual members dont know about the status of the colony as a whole. There is no leader to guide all other individuals in their roles.

Instead, the colonys knowledge is distributed among agents, and they have systems of exchanging this information. However, individuals cannot accomplish their roles unless the rest of the swarm plays their part.

In the colony, individuals can exchange vital information, such as a food source or imminent danger. The interaction is based on the locality concept so that no individual knows the situation as a whole. They will modify their behavior based on how their mates familiar with the situation behaved. For example, among termites, changes in the behavior of worker termites are determined by the nest structure.

The simple yet complex organizational system of each agent comes from observing and mimicking others interactions with one another and the environment. These interactions move throughout the colony, which is what helps the colony accomplish tasks that cannot be accomplished individually. The interactions are called self-organizing behaviors.

Self-organization combines four characteristics:

These properties are also desirable when thinking of a system of swarm robots:

These criteria inform the development of any swarm robotics technology.

Based on the definition and the properties above, these are the criteria used in developing multi-robot technology and systems:

The characteristics embodied by swarm intelligence are borrowed from social insect colonies. In fact, biologists have played a major role in bootstrapping research for swarm bot technology.

A robot swarm is defined as a self-organizing multi-robot system whose main characteristic is high redundancy.

We can also say that have localized sensory and communication capacity, with no access to global information. The collective swarm behavior is the total of individual robots interaction with their peers and their surroundings.

Because of the above characteristics, swarm robotics can help us to realize flexible, scalable, and fault-tolerant systems across dozens of business and industry verticals.

Swarm-bots also enable the development of systems that can handle a variety of operating conditions or environments. Flexibility is possible because the swarm is self-organized and well-distributed. The robots allocate themselves dynamically to different tasks according to the requirements of their immediate environment; they dont rely on any global information or pre-existing infrastructure.

Swarm robotics also enables the creation of scalable systems so that the introduction or removal of individuals doesnt impact swarm performance. Localized sensing and communication enables scalability provided the density of the swarm isnt significantly changed; each individual interacts with the same approximate number of peers.

Through swarm robotics, we can create systems that are adaptable to the failure of one or more of the system parts/constituent robots. Therefore, failure of individuals does not result in failure of the entire swarm. This fault tolerance comes from the high-redundancy of the swarm; there is no centralized control, leaders, or individuals in predefined roles.

In Part Two of the series, well look closer at some of the exciting real-world cases where swarm bots are already starting to have an impact.

See original here:
Swarm Bot Series Part One: Heres What Bees are Teaching Us About the Future of the IoT - IoT For All

Related Post
This entry was posted in Termites. Bookmark the permalink.

Comments are closed.